Tracking consent

By continuing to use our site you agree to our Terms of Service and Privacy Policy. You can learn more about how we use cookies by clicking here.


608 miles on a single charge

Gemini 608
Gemini WLTP 608.1 Miles on a single charge


185+ kWh
260 Wh/kg
450 Wh/L
Cell-to-Pack Efficiency
System Configuration
2,640 x 1,490 x 128 mm
710 kg
411 L
748 V
Peak Power
345 kW
Continuous Power
130 kW
Cycle Life
>250,000 miles

Doubling range safely.

Electric vehicles will go mainstream when people are comfortable with an electric vehicle as their only vehicle. Gemini is an architecture designed to double the range of electric vehicles without compromising safety. It uses two cells: a lithium iron phosphate (LFP) cell for daily driving and an anode-free cell for longer trips. A DC-DC converter moves energy from between them seamlessly while our patented skip-cell architecture sharply reduces the risk of thermal runaway.

Internal components of Gemini battery pack with callouts

Gemini Powers BMW iX 608 Miles

Watch video

Gemini - ONE 608.1 mile film

Gemini’s dual-chemistry architecture contains two cells using two different battery chemistries — each doing what they do best.

Car frame diagram illustrated with daily driving and longer trips
Lithium iron phosphate hexagon graphic
LFP for daily driving.

A lithium iron phosphate (LFP) cell powers the motor and meets the demands of daily driving. Gemini’s LFP cell delivers 441 Wh/L, which produces a range of 150 miles on a charge — more than enough power for 99% of trips.

Anode free hexagon graphic
Anode-free for longer trips.

Gemini is road trip ready. After 150 miles, the anode-free cells begin powering the vehice. With an energy density of 1,007 Wh/L, the anode-free cells provide an additional 450 miles of range. Combined, the dual-chemistry architecture enables one of the longest-range EV packs on the market — delivering more than 600 miles on a single charge.

Dual chemistry hexagon graphic
Gemini Dual-Chemistry.
Together, both chemistries deliver energy density and durability without compromise.

More sustainable metals.

Gemini delivers more range than batteries that use nickel-and-cobalt-based chemistry. But Gemini maximizes materials that are abundant — iron for LFP, manganese for anode-free — while sharply reducing use of rare, expensive metals like nickel and cobalt.

Inside view of battery pack with graphic illustrating decrease in use of nickel and cobalt-based chemistry
Gemini compared to nickel-cobalt-based batteries

Faster to market.

Gemini’s anode-free cell lowers costs by using abundant materials and a simpler production process. As a result, we can bring our advanced anode-free chemistry to market faster.

Gemini is safer, too.

By replacing nickel, cobalt and graphite with other materials, Gemini greatly reduces the risk of thermal runaway. And our patented skip-cell architecture helps prevent overheating in the pack. 

Anode-free explained.

All batteries have an anode and a cathode. But battery makers also use the term “anode” to refer to the active material placed on the battery’s current collector during the manufacturing process. This material may contain graphite or silicon. We create our “anode” without this material. Instead, during “formation” — an essential step during which the battery is charged and discharged —  small amounts of lithium plate onto the current collector. This process forms the anode in our anode-free battery.

Less material, lower cost.

Our advanced anode-free chemistry significantly lowers costs by using manganese-rich cathodes and no cobalt. Using less material allows us to fit more energy density into the cell, further increasing range.

Chart comparing materials used in an anode-free battery cell with those used in an industry-standard battery
  • Gemini Battery Powers BMW iX 608 Miles on a Single Charge

    The Gemini dual chemistry battery achieved 608.1 miles of range in a BMW iX during a Worldwide Harmonized Light Vehicle Test Procedure (WLTP) test.